BIRZEIT UṄIVERSITY
Mathematics Department
Math 330

(problems from 1 to 10, 4 points each)

(1) Using the bisection method with $a_{0}=4, b_{0}=5$ to estimate the solution of the equation $x^{3}-7 x^{2}+15 x=19$, if $c_{0}=4.5$ Find the next 2 iterations c_{1}, c_{2}.
(2) Using the False position method with $a_{0}=4, b_{0}=5$ to estimate the solution of the equation $x^{3}-7 x^{2}+15 x=19$, If $c_{0}=4.6154$, Find the next iteration c_{1}.
3) Using Fixed point theorem, show why the function $g(x)=\sqrt[3]{2 x+5}$ has a fixed point in the interval $[2,3]$
4) Show why the fixed-point iteration generated by the function $g(x)=\sqrt[3]{2 x+5}$ converges in the interval $[2,3]$
(5) The point $p=2$ is a fixed point of the function $g(x)=\frac{2}{x}+1$. Show if it is attractive or repulsive and why.
6) The point $p=3$ is a zero of the function $f(x)=x^{3}-7 x^{2}+15 x-9$, Use Newton iteration to estimate the zero $p=3$, starting with $p_{0}=3.2$ Find p_{1}, p_{2}
7) The point $p=3$ is a zero of the function $f(x)=x^{3}-7 x^{2}+15 x-9$, using Newton iteration to estimate the zero $p=3$, Find the order of convergence R and the asymptotic error constant A.
8) The point $p=2$ is a fixed point of the function $g(x)=\frac{x}{2}+\frac{2}{x}$
find the order of convergence of the fixed-point iteration generated by $g(x)$
9) If A is $n \times n$ matrix, what is the cost of calculating $3 A^{3}-2 A$
10)Consider the following system of equations

$$
\begin{aligned}
& x=g_{1}(x, y, z)=3 x^{2}-2 y^{3}+2 z \\
& y=g_{2}(x, y, z)=10-2 x y-z^{2} \\
& z=g_{3}(x, y, z)=10 z-2 x y
\end{aligned}
$$

Use Gauss-Sidel iteration to find the $1^{\text {st }}$ iteration given that the initial point is $(3,2,4)$

This page each problem worth 5 points

11)Use newton method to find the $1^{\text {st }}$ iteration of the following system

$$
\begin{gathered}
x=3 x^{2}-y^{3} \\
y=2 y^{2}-2 x
\end{gathered}
$$

given that the initial estimation is $(1.2,3.4)$
12) Solve the following system of equations using Gaussian elimination with partial pivoting and three digits rounding

$$
6.33 x-0.113 y=6.10
$$

$10.2 x+0.182 y=10.6$

